The dynamic mechanism of 4E-BP1 recognition and phosphorylation by mTORC1

نویسندگان

چکیده

•Binding of 4E-BP1 by mTORC1 subunit Raptor observed NMR•Raptor recognizes two interaction sites in intrinsically disordered 4E-BP1•Two-site binding orients for hierarchical multisite phosphorylation•The ternary eIF4E:4E-BP1:mTORC1 assembly mediates rapid signaling The activation cap-dependent translation eukaryotes requires multisite, phosphorylation 4E-BP the 1 MDa kinase mammalian target rapamycin complex (mTORC1). To resolve mechanism this at atomic level, we monitored NMR spectroscopy 4E protein isoform (4E-BP1) with regulatory-associated mTOR (Raptor). N-terminal RAIP motif and C-terminal TOR (TOS) bind separate Raptor, resulting avidity-based tethering 4E-BP1. This flexible central region toward site phosphorylation. structural constraints imposed interactions, combined phosphorylation-induced conformational switching 4E-BP1, explain hierarchy mTORC1. Furthermore, demonstrate that both free eIF4E-bound allowing entire pool efficient translation. Finally, our findings provide a mechanistic explanation differential sensitivity sites. conserved eukaryotic serine/threonine (TOR) is regulator cellular growth metabolism (González Hall, 2017González A. Hall M.N. Nutrient sensing yeast mammals.EMBO J. 2017; 36: 397-408Crossref PubMed Scopus (357) Google Scholar). Mammalian (mTOR) senses levels metabolites including amino acids, glucose, energy, oxygen, as well factors, to regulate specific set processes ranging from biosynthesis autophagy (Saxton Sabatini, 2017Saxton R.A. Sabatini D.M. Signaling Growth, Metabolism, Disease.Cell. 168: 960-976Abstract Full Text PDF (2770) Aberrant implicated multitude severe diseases, diabetes, cancer, neurological disorders (Liu 2020Liu G.Y. nexus nutrition, growth, ageing disease.Nat. Rev. Mol. Cell Biol. 2020; 21: 183-203Crossref (637) functions distinct multiprotein complexes, (mTORC1) mTORC2. Both complexes contain homolog lethal sec thirteen 8 (mLST8) but differ other subunits. Regulatory-associated (Raptor) mTORC1, whereas rapamycin-insensitive companion (Rictor) SAPK-interacting (SIN1) define mTORC2 (Hara et al., 2002Hara K. Maruki Y. Long X. Yoshino Oshiro N. Hidayat S. Tokunaga C. Avruch Yonezawa partner (TOR), action.Cell. 2002; 110: 177-189Abstract (1419) Scholar; Jacinto 2004Jacinto E. Loewith R. Schmidt Lin Rüegg M.A. 2 controls actin cytoskeleton insensitive.Nat. 2004; 6: 1122-1128Crossref (1640) Kim 2002Kim D.H. Sarbassov D.D. Ali S.M. King J.E. Latek R.R. Erdjument-Bromage H. Tempst P. interacts raptor form nutrient-sensitive signals cell machinery.Cell. 163-175Abstract (2286) 2002Loewith Wullschleger Lorberg Crespo J.L. Bonenfant D. Oppliger W. Jenoe Two only one which sensitive, have roles control.Mol. Cell. 10: 457-468Abstract (1418) 2004Sarbassov Guertin D.A. Rictor, novel mTOR, defines raptor-independent pathway regulates cytoskeleton.Curr. 14: 1296-1302Abstract (2091) Aylett 2016Aylett C.H. Sauer Imseng Boehringer Ban Maier T. Architecture human 1.Science. 2016; 351: 48-52Crossref (214) Bareti? 2016Bareti? Berndt Ohashi Johnson C.M. Williams R.L. Tor forms dimer through an helical solenoid topology.Nat. Commun. 7: 11016Crossref (55) Scaiola 2020Scaiola Mangia F. Berneiser Shimobayashi M. Stuttfeld 3.2-Å resolution structure mTORC2.Sci. Adv. eabc1251Crossref catalytic subunit, (in mTORC1) substrate (Nojima 2003Nojima Eguchi Hara Tanaka partner, raptor, binds substrates p70 S6 their motif.J. Chem. 2003; 278: 15461-15464Abstract (495) Schalm 2003Schalm S.S. Fingar D.C. Blenis TOS motif-mediated function.Curr. 13: 797-806Abstract (383) Upon activation, phosphorylates diverse signal downstream processes. Of particular relevance initiation factor (4E-BP) (Hay Sonenberg, 2004Hay Sonenberg Upstream mTOR.Genes Dev. 18: 1926-1945Crossref (3377) (IDP) exists three isoforms: 4E-BP2 4E-BP3 (Fletcher 1998Fletcher McGuire A.M. Gingras A.C. Li Matsuo Wagner G. proteins inhibit eIF4E without folded structure.Biochemistry. 1998; 37: 9-15Crossref (105) In its non-phosphorylated state, eIF4E, thereby inhibiting 5?-cap-dependent (Peter 2015Peter Igreja Weber Wohlbold L. Weiler Ebertsch Weichenrieder O. Izaurralde Molecular architecture translational inhibitors bound eIF4E.Mol. 2015; 57: 1074-1087Abstract (85) Sekiyama 2015Sekiyama Arthanari Papadopoulos Rodriguez-Mias Léger-Abraham dual activity 4EGI-1: Dissociating eIF4G stabilizing unphosphorylated 4E-BP1.Proc. Natl. Acad. Sci. USA. 112: E4036-E4045Crossref (69) inhibition occurs because competes via common 54YXXXXL?60 (where X any acid ? hydrophobic acid) (Marcotrigiano 1999Marcotrigiano Burley S.K. Cap-dependent regulated molecular mimic eIF4G.Mol. 1999; 3: 707-716Abstract (407) sequentially phosphorylated first residues Thr37 Thr46 subsequently Ser65 Thr70 (and Ser83) (Gingras 1999Gingras Gygi S.P. Raught B. Polakiewicz R.D. Abraham R.T. Hoekstra M.F. Aebersold Regulation phosphorylation: two-step mechanism.Genes 1422-1437Crossref (985) Scholar, 2001Gingras Niedzwiecka Miron Wyslouch-Cieszynska Hierarchical inhibitor 4E-BP1.Genes 2001; 15: 2852-2864Crossref (1162) Phosphorylation early induces four-stranded ?-domain structurally remodels 4E-BP2, causing 100-fold decrease affinity between (Bah 2015Bah Vernon R.M. Siddiqui Z. Krzeminski Muhandiram Zhao Kay L.E. Forman-Kay J.D. Folding regulatory switch.Nature. 519: 106-109Crossref (344) Then, late Ser65, Thr70, Ser83 shifts equilibrium further ?-domain, 40-fold leads complete dissociation (Dawson 2020Dawson Bah Zhang Chong P.A. Vanama Gradinaru C.C. Non-cooperative folding exchange eIF4E-binding binding-incompatible states tunes inhibition.Nat. 11: 3146Crossref (9) Overall, sequential de-repression partially inhibited natural macrolide (Beretta 1996Beretta Svitkin Y.V. Rapamycin blocks inhibits translation.EMBO 1996; 658-664Crossref (596) Brunn 1997Brunn G.J. Hudson Sekuli? J.M. Hosoi Houghton P.J. Lawrence Jr., J.C. repressor PHAS-I rapamycin.Science. 1997; 277: 99-101Crossref (798) soluble FKBP12, FKBP12-rapamycin (FRB) domain sterically hinder access active (Aylett Choi 1996Choi Chen Schreiber S.L. Clardy Structure interacting FRAP.Science. 273: 239-242Crossref (700) Intriguingly, specifically sites, not behind has so far remained unexplained. contains conserved, five sequence C terminus found such ribosomal (S6K1: F5DIDL9; 4E-BP1: F114EMDI118), termed Blenis, 2002Schalm Identification required signaling.Curr. 12: 632-639Abstract (378) Mutations motif, phenylalanine, abrogate S6K1 or reduced these (Choi 2003Choi K.M. McMahon L.P. motifs recognition raptor.J. 19667-19673Abstract (96) Nojima Probable also been predicted HIF1? (F99VMVL103) (Land Tee, 2007Land S.C. Tee A.R. Hypoxia-inducible 1alpha 2007; 282: 20534-20543Abstract (393) Scholar), ER? (F591PATV595) (Alayev 2016Alayev Salamon R.S. Berger Schwartz N.S. Cuesta Snyder R.B. Holz M.K. directly activates upon estrogen stimulation.Oncogene. 35: 3535-3543Crossref (50) MAF1 (F143KDLK147) (Shor 2010Shor Wu Shakey Q. Toral-Barza Shi Follettie Yu Requirement regulation Maf1 control RNA polymerase III-dependent transcription cancer cells.J. 2010; 285: 15380-15392Abstract (124) TFIIIC63 (F109DMEI113) (Kantidakis 2010Kantidakis Ramsbottom B.A. Birch Dowding S.N. White R.J. associates TFIIIC, tRNA 5S rRNA genes, targets Maf1.Proc. 107: 11823-11828Crossref (160) proline-rich Akt 40 (PRAS40: F129VMDE133) competing (Wang 2007Wang Harris T.E. Roth PRAS40 functioning direct binding.J. 20036-20044Abstract (366) approximately 65 Å (Yang 2017Yang Jiang Yang H.J. Miller Dhar Pavletich N.P. Mechanisms RHEB PRAS40.Nature. 552: 368-373Crossref (221) it remains puzzling how distant can position dynamic site-specific Besides possesses additional located close N terminus: (human 4E-BP2: 13RAIP 15RAIP, respectively) (Tee Proud, 2002Tee Proud C.G. Caspase cleavage 4E-binding yields dominant reveals motif.Mol. 22: 1674-1683Crossref (111) contrast RAIP-motif less defined. Although acids third fourth positions (IP) are vertebrate 4E-BPs, (7CPIP), not. addition, role clear compared motif. Different reported being (Beugnet 2003Beugnet Wang Target (TOR)-signaling play TOR-dependent 1.J. 40717-40722Abstract (100) Scholar) essential mTORC1-mediated (Eguchi 2006Eguchi Kikkawa U. association size.Genes Cells. 2006; 757-766Crossref (23) understood, Solution method choice observe, IDPs well-folded proteins. It detect quantify intrinsic dynamics polypeptides permits studies on systems, affinities picomolar millimolar (Milles 2018Milles Salvi Blackledge Jensen M.R. Characterization complexes: From vitro cell-like environments.Prog. Nucl. Magn. Reson. Spectrosc. 2018; 109: 79-100Crossref (44) Interaction conditions be include (Charlier 2017Charlier Bouvignies Pelupessy Walrant Marquant Kozlov De Ioannes Bolik-Coulon Sagan Cortes al.Structure Dynamics Intrinsically Disordered Protein Region That Partially Folds Binding Chemical-Exchange NMR.J. Am. Soc. 139: 12219-12227Crossref (26) multivalent interactions 2015Milles Mercadante Aramburu I.V. Banterle Koehler Tyagi Clarke Shammas al.Plasticity ultrafast nucleoporins nuclear transport receptors.Cell. 163: 734-745Abstract (176) highly (Delaforge 2018Delaforge Kragelj Tengo Palencia Milles Deciphering Dynamic Profile Exchange Spectroscopy.J. 140: 1148-1158Crossref (51) parameters depend timescale size entity studied. large macromolecular assembly, polypeptide segments display increase transverse relaxation rate constants caused higher weight line broadening up limiting case state no longer detected. An example part studied solution viral nucleocapsids reach sizes several megadaltons (Communie 2013Communie Habchi Yabukarski Blocquel Schneider Tarbouriech Papageorgiou Ruigrok R.W. Jamin al.Atomic description nucleoprotein phosphoprotein Hendra virus.PLoS Pathog. 2013; 9: e1003631Crossref (58) 2011Jensen Communie Ribeiro E.A. Martinez Desfosses Salmon Mollica Gabel Longhi al.Intrinsic disorder measles virus nucleocapsids.Proc. 2011; 108: 9839-9844Crossref (157) Here, investigate interplay among phosphorylation, binding. We employ monitor level study influenced presence follow changes peak intensities times. Notably, effective experiments increases 13 kDa 163 Using representatives different states, map relevant configuration space obtain full mTORC1-mediated, 4E-BP1-based control. optimized X-ray crystal Chaetomium thermophilum (CtRaptor, 44% identity Raptor), after limited proteolysis, 3.5 (Table 1). Compared previous crystallographic model 4.3 allowed representation backbone poly-alanine chain, current data enabled side-chain modeling, thus significantly improved model. CtRaptor adopts Z-shaped conformation (RNC) WD40 positioned opposite ends armadillo repeat-containing (ARM) (Figures 1A–1C). Three extended stretches (termed S1, S2, S3) remain stably associated core proteolytic digestion (Figure S1A). S1 (residues 212–255; 18–56 Raptor) attached N-terminally RNC runs along ARM contact blades two, three, four domain. S2 S3 linker 939–991; 806–840 terminal ?-helical repeat unit flanged side 1090–1171; 950–1009 domain, cleft formed concave surface connects aligns Arabidopsis thaliana (AtRaptor) S1B; present all orthologs may beyond contributing integrity. identify TOS-motif site, soaked crystals synthetic selenomethionine-labeled peptide (FEMDI) derived sequence. identified positive difference density anomalous pocket transition domains, indicating S1C). These good agreement those extracted mTORC1-4E-BP1 cryoelectron microscopy (cryo-EM) AtRaptor structures peptides Scholar).Table 1Data collection refinement statisticsDatasetCtRaptor (PDB: 6ZPN)Data collectionSpace groupP41212Unit cell: a, b, c (Å)183.30, 183.30, 271.39Unit ?, ?, ? (°)90, 90, 90Resolution (Å)49.97–3.5 (3.6–3.5)R means (%)36.7 (395.5)CC1/298.9 (36.7)I/?I5 (0.8)No. reflections: total752,603 (60,129)No. unique58,884 (4,557)Completeness (%)99.9 (100)Redundancy12.8 (13.2)RefinementResolution (Å)47.46–3.5No. reflections58,659Rwork/Rfree22.8/24.5No. atoms: protein34,649No. non-protein0No. solvent0Average B factor: protein142.8Average non-proteinN/AAverage solventN/ABond lengths (root mean square deviation (RMSD), Å)0.005Bond angles (RMSD, °)0.877Ramachandran plot: % favored92.3Ramachandran allowed7.5Ramachandran outliers0.2 Open table new tab aqueous features intense peaks narrow amide 1H chemical shift dispersion, expected IDP 1D S1D). 93% non-proline amides could assigned pH 6.0, assignment was transferred titration 8.0 S1E). value biochemical stability full-length were then mapped 2D [15N,1H]-TROSY spectra obtained during Raptor. Chemical perturbations marginal, individual decreased concentrations, interaction. following 15N-labeled unlabeled S1) displayed bar graphs showing ratio I/I0 intensity Raptor-bound (I) (I0). Residues below detection limit reference spectrum (I0 ? 0) excluded analysis, shown residues. non-zero initial > disappear (I short negative 1E S2A–S2C). distinguish scenarios residue-specific manner. substantial reduction intensity, disappearance saturating conditions, fully protonated. Additional occur intermediate within (Lukhele 2013Lukhele bipartite interface.Structure. 2186-2196Abstract (63) contrast, preserve loc

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism.

The multisubunit eukaryotic translation initiation factor (eIF) 4F recruits 40S ribosomal subunits to the 5' end of mRNA. The eIF4F subunit eIF4E interacts directly with the mRNA 5' cap structure. Assembly of the eIF4F complex is inhibited by a family of repressor polypeptides, the eIF4E-binding proteins (4E-BPs). Binding of the 4E-BPs to eIF4E is regulated by phosphorylation: Hypophosphorylate...

متن کامل

O-13: Phosphorylation of 4E-BP1 Promotes Translation at The Oocyte Spindle

Background: Fully grown mammalian oocyte utilizes transcripts synthetized and stored during earlier development. In the mouse oocyte there are three forms of cap-dependent translational repressors: 4E-BP1, 4E-BP2, and 4E-BP3. The dominant form, 4E-BP1, inhibits cap-dependent translation by binding to the eIF4E translation initiation factor. Hyperphosphorylation of 4E-BP1 disrupts this inhibitor...

متن کامل

Rapamycin-insensitive mTORC1 activity controls eIF4E:4E-BP1 binding

The recent development of mammalian target of rapamycin (mTOR) kinase domain inhibitors and genetic dissection of rapamycin-sensitive and -insensitive mTOR protein complexes (mTORC1 and mTORC2) have revealed that phosphorylation of the mTOR substrate 4E-BP1 on amino acids Thr37 and/or Thr46 represents a rapamycin-insensitive activity of mTORC1. Despite numerous previous reports utilizing serine...

متن کامل

Stabilization of p21 by mTORC1/4E-BP1 predicts clinical outcome of head and neck cancers.

The levels, regulation and prognostic value of p21 in head and neck squamous cell carcinomas (HNSCC) has been puzzling for years. Here, we report a new mechanism of regulation of p21 by the mTORC1/4E-BP1 pathway. We find that non-phosphorylated 4E-BP1 interacts with p21 and induces its degradation. Accordingly, hyper-activation of mTORC1 results in phosphorylation of 4E-BP1 and stabilization of...

متن کامل

In vivo modulation of 4E binding protein 1 (4E-BP1) phosphorylation by watercress: a pilot study.

Dietary intake of isothiocyanates (ITC) has been associated with reduced cancer risk. The dietary phenethyl ITC (PEITC) has previously been shown to decrease the phosphorylation of the translation regulator 4E binding protein 1 (4E-BP1). Decreased 4E-BP1 phosphorylation has been linked to the inhibition of cancer cell survival and decreased activity of the transcription factor hypoxia-inducible...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Molecular Cell

سال: 2021

ISSN: ['1097-4164', '1097-2765']

DOI: https://doi.org/10.1016/j.molcel.2021.03.031